Adapters
Learn about database and embedder adapters that connect QRyptoRAG to different vector databases and embedding providers.
Database Adapters
QRyptoRAG supports multiple vector database backends through adapter interfaces:
- Supabase (pgvector): Production-ready with PostgreSQL and pgvector
- In-Memory: Perfect for development and testing
- File-based: JSON file storage for simple use cases
- Custom: Implement your own database adapter
Using Supabase
import { createClient } from '@supabase/supabase-js';
import { createSupabaseAdapter } from 'qr-video-rag';
const supabase = createClient(URL, KEY);
const database = createSupabaseAdapter(supabase);Embedder Adapters
Generate semantic embeddings using your preferred provider:
- Google Gemini: Primary embedder, high quality and cost-effective
- Cohere: Multilingual embeddings with strong performance
- Hugging Face: Open-source models for privacy-focused deployments
- Google AI: Alternative Google embedding service
- Mock/Cached: For testing and performance optimization
Using Gemini Embeddings
import { createGeminiEmbedder } from 'qr-video-rag';
const embedder = createGeminiEmbedder(process.env.GEMINI_API_KEY);